ar X iv : h ep - t h / 06 12 12 8 v 1 1 3 D ec 2 00 6 Riemannian Geometry of Noncommutative Surfaces
نویسندگان
چکیده
منابع مشابه
ar X iv : h ep - t h / 05 12 13 4 v 1 1 3 D ec 2 00 5 A LORENTZ COVARIANT NONCOMMUTATIVE GEOMETRY
A noncommutative geometry that preserves lorentz covariance was introduced by Hartland Snyder in 1947. We show that this geometry has unusual properties under momentum translation, and derive for it a form of star product.
متن کاملar X iv : h ep - t h / 06 03 12 5 v 1 1 5 M ar 2 00 6 hep - th / 0603125 ITP – UH – 05 / 06 Noncommutative Instantons on C
We construct explicit solutions of the Hermitian Yang-Mills equations on the noncommutative space C θ . In the commutative limit they coincide with the standard instantons on CP written in local coordinates.
متن کاملar X iv : h ep - t h / 06 12 03 5 v 2 1 1 D ec 2 00 6 Dark energy induced by neutrino mixing
The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.
متن کاملar X iv : h ep - t h / 03 12 06 2 v 1 5 D ec 2 00 3 More Membrane Matrix Model Solutions , – and Minimal Surfaces in S 7
New solutions to the classical equations of motion of a bosonic matrix-membrane are given. Their continuous limit defines 3-manifolds (in Minkowski space) whose mean curvature vanishes. Part of the construction are minimal surfaces in S, and their discrete analogues. Some time ago [1], solutions of the bosonic matrix-model equations, .. Xi = − d ∑ j=1 [ [ Xi, Xj ] , Xj ]
متن کاملar X iv : h ep - t h / 03 12 06 2 v 2 7 D ec 2 00 3 More Membrane Matrix Model Solutions , – and Minimal Surfaces in S 7 Joakim
New solutions to the classical equations of motion of a bosonic matrix-membrane are given. Their continuum limit defines 3-manifolds (in Minkowski space) whose mean curvature vanishes. Part of the construction are minimal surfaces in S, and their discrete analogues. Some time ago [1], solutions of the bosonic matrix-model equations, .. Xi = − d ∑ j=1 [ [ Xi, Xj ] , Xj ]
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006